PotreeConverter - Uniform Partitioning of Point Cloud Data
into an Octree

Markus Schiitz
Student of Visual Computing
Entwurf und Programmierung einer Rendering-Engine
Vienna University of Technology
mschuetz@potree.org

1 Introduction

Potree relies on an octree to store point cloud
data and load only those nodes visible from the
current point of view. Each node, even internal
nodes, stores a subset of the point cloud. The
former PotreeConverter, written in Java, assem-
bled the octree by randomly picking points for
each node. The new PotreeConverter, written in
C++, chooses points uniformly which improves
the visual quality on the one hand but also per-
formance since fewer points are needed to achieve
a better quality.

2 Partitioning

The new, recursive, approach works as follows:
1. Define a minimum distance between points.

2. Tterate through all points in the unprocessed
node d and choose a subset such that the
distance between all selected points is bigger
than minDistance.

3. Save the selected points in the processed
node r.

4. Depending on their position, the remaining
points will be split into nodes d0 to d7, which
represent the 8 child nodes of d.

5. Repeat the process for each child of d.

A 2-Dimensional example using a quadtree
instead of an octree is shown in Figure 1. With
each repetition, the minimum distance is cut in
half. Nodes with prefix r are finished. Nodes with
prefix d are unprocessed and need to be parti-
tioned. The name of each node indicates its loca-
tion in the octree. Nodes d and r are the roots.

Node r07 is the 8th child of the first child of the
root node.

o l’.._u s
P 3 ¢ i
R L AT

Figure 1: Processing 2 levels

3 Point Selection

Random point selection results in a non-uniform
subset. This leads to holes in some areas and
clusters of points in other areas, as shown in Fig-
ure 3. Selecting points such that the distance
between each point is roughly the same improves
the quality of the subset. A sparse 3D-Grid is
used to do this efficiently. The grid dimension is
equal to the Axis Aligned Bounding Box(AABB).
The width, height and depth of each cell is equal
to the minimum distance between points. Then,
the grid cell index of each point is calculated. If
the cell and all its neighbours are empty, the point
is stored in the cell. If the cell or at least one of
the 26 neighbours is not empty, then the distance



to the points in this 27 cells area is checked. If
the distance to all points is greater than the min-
imum distance, then the new point is added to
the grid. Figure 2 shows how 2 points were suc-
cessfully added to the grid, but the third point
was discarded.

Figure 2: At the beginning, the grid cell and its
neighbours are empty. P1 is added to the grid.
When p2 is added, the distance between pl and
p2 must be checked. Since it is greater than the
required minimum distance, p2 is added to the
grid. When p3 is added, the distance between pl
and p3 must be checked. Since it is smaller than
the required minimum distance, p3 will not be
added to the grid.

The distance between all points inside the
grid will be greater than the minimum distance
and saved in a node with prefix r. The remaining
points will be saved in nodes with prefix d.

This method works for choosing the root
node subsample. It is, however, also necessary
to ensure that points in descending nodes are
not too close to points further up the hierarchy.
Therefore, when processing any descendant of the
root, d012 for example, all points in its ances-
tors, r, r0 and r01, must be added to the grid
first. Points from ancestor nodes will not be saved
to r012, though, since this would result in du-
plicates. They are only needed for the distance
check.

(a) 5000 points

ende” ... II L v o%*

. * g .l'-..f.-l'.ll
. .

(b) 400 randomly choosen points

e e e Ba® 3% , 8 0, " - a
L ] -.

L ] . s s %ag", *

(c) 403 points choosen with a minimum dis-
tance from each other

Figure 3: 2 different sampling strategies



4 Results

The results of the new PotreeConverter are better
in quality but also in performance as fewer points
are needed for to achieve a better look. An ex-
ample is shown in Figure 4.

(a) Pompei point cloud with random sam-
pling.

(b) Pompei point cloud with uniform sam-
pling.

Figure 4: Results with a point cloud provided by
the CNRS-MAP-Gamsau laboratory



